direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22.19C24, C42⋊9C23, C22.24C25, C23.12C24, C25.96C22, C24.608C23, (C24×C4)⋊9C2, C4⋊C4⋊16C23, (C22×C4)⋊56D4, C2.8(D4×C23), (C4×D4)⋊89C22, (C2×D4)⋊15C23, C23⋊7(C4○D4), (C2×C4).29C24, (C2×Q8)⋊14C23, C4⋊D4⋊95C22, C22⋊C4⋊17C23, (C23×C4)⋊28C22, (C22×C4)⋊12C23, (C2×C42)⋊42C22, C23.707(C2×D4), C4.169(C22×D4), C22≀C2⋊41C22, C4○(C22.19C24), (C22×D4)⋊58C22, C22⋊Q8⋊103C22, (C22×Q8)⋊56C22, C22.46(C22×D4), C42⋊C2⋊83C22, C22.D4⋊66C22, (C2×C4×D4)⋊69C2, C4○(C2×C4⋊D4), C4○(C2×C22⋊Q8), C4○(C2×C22≀C2), (C2×C4)⋊22(C2×D4), (C2×C4)○2C22≀C2, C22⋊1(C2×C4○D4), (C2×C4)○2(C4⋊D4), (C2×C4⋊D4)⋊76C2, (C22×C4)○C22≀C2, (C2×C4)○2(C22⋊Q8), (C2×C22⋊Q8)⋊86C2, (C2×C22≀C2)⋊30C2, C2.8(C22×C4○D4), C4○(C2×C22.D4), (C2×C4⋊C4)⋊125C22, (C2×C4○D4)⋊65C22, (C22×C4○D4)⋊11C2, (C2×C42⋊C2)⋊51C2, (C22×C4)○(C22⋊Q8), (C2×C22⋊C4)⋊83C22, (C2×C4)○(C22.19C24), (C2×C4)○2(C22.D4), (C2×C22.D4)⋊67C2, (C2×C4)○2(C2×C22⋊Q8), (C2×C4)○2(C2×C22≀C2), (C22×C4)○(C2×C22⋊Q8), (C22×C4)○(C2×C22≀C2), SmallGroup(128,2167)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 1452 in 940 conjugacy classes, 452 normal (16 characteristic)
C1, C2, C2 [×6], C2 [×16], C4 [×8], C4 [×16], C22, C22 [×18], C22 [×88], C2×C4 [×44], C2×C4 [×72], D4 [×56], Q8 [×8], C23, C23 [×22], C23 [×80], C42 [×8], C22⋊C4 [×40], C4⋊C4 [×24], C22×C4 [×2], C22×C4 [×48], C22×C4 [×60], C2×D4 [×28], C2×D4 [×28], C2×Q8 [×4], C2×Q8 [×4], C4○D4 [×32], C24, C24 [×8], C24 [×12], C2×C42 [×2], C2×C22⋊C4 [×10], C2×C4⋊C4 [×6], C42⋊C2 [×8], C4×D4 [×32], C22≀C2 [×16], C4⋊D4 [×16], C22⋊Q8 [×16], C22.D4 [×16], C23×C4 [×2], C23×C4 [×14], C23×C4 [×8], C22×D4, C22×D4 [×6], C22×Q8, C2×C4○D4 [×8], C2×C4○D4 [×8], C25, C2×C42⋊C2, C2×C4×D4 [×4], C2×C22≀C2 [×2], C2×C4⋊D4 [×2], C2×C22⋊Q8 [×2], C2×C22.D4 [×2], C22.19C24 [×16], C24×C4, C22×C4○D4, C2×C22.19C24
Quotients:
C1, C2 [×31], C22 [×155], D4 [×8], C23 [×155], C2×D4 [×28], C4○D4 [×8], C24 [×31], C22×D4 [×14], C2×C4○D4 [×12], C25, C22.19C24 [×4], D4×C23, C22×C4○D4 [×2], C2×C22.19C24
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=bd=db, be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, eg=ge, fg=gf >
(1 9)(2 10)(3 11)(4 12)(5 24)(6 21)(7 22)(8 23)(13 19)(14 20)(15 17)(16 18)(25 30)(26 31)(27 32)(28 29)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 23)(2 24)(3 21)(4 22)(5 10)(6 11)(7 12)(8 9)(13 27)(14 28)(15 25)(16 26)(17 30)(18 31)(19 32)(20 29)
(1 18)(2 19)(3 20)(4 17)(5 27)(6 28)(7 25)(8 26)(9 16)(10 13)(11 14)(12 15)(21 29)(22 30)(23 31)(24 32)
(1 23)(2 24)(3 21)(4 22)(5 10)(6 11)(7 12)(8 9)(13 25)(14 26)(15 27)(16 28)(17 32)(18 29)(19 30)(20 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 25)(14 26)(15 27)(16 28)(17 32)(18 29)(19 30)(20 31)(21 23)(22 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,24)(6,21)(7,22)(8,23)(13,19)(14,20)(15,17)(16,18)(25,30)(26,31)(27,32)(28,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,27)(14,28)(15,25)(16,26)(17,30)(18,31)(19,32)(20,29), (1,18)(2,19)(3,20)(4,17)(5,27)(6,28)(7,25)(8,26)(9,16)(10,13)(11,14)(12,15)(21,29)(22,30)(23,31)(24,32), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,25)(14,26)(15,27)(16,28)(17,32)(18,29)(19,30)(20,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,25)(14,26)(15,27)(16,28)(17,32)(18,29)(19,30)(20,31)(21,23)(22,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,24)(6,21)(7,22)(8,23)(13,19)(14,20)(15,17)(16,18)(25,30)(26,31)(27,32)(28,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,27)(14,28)(15,25)(16,26)(17,30)(18,31)(19,32)(20,29), (1,18)(2,19)(3,20)(4,17)(5,27)(6,28)(7,25)(8,26)(9,16)(10,13)(11,14)(12,15)(21,29)(22,30)(23,31)(24,32), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,25)(14,26)(15,27)(16,28)(17,32)(18,29)(19,30)(20,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,25)(14,26)(15,27)(16,28)(17,32)(18,29)(19,30)(20,31)(21,23)(22,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([(1,9),(2,10),(3,11),(4,12),(5,24),(6,21),(7,22),(8,23),(13,19),(14,20),(15,17),(16,18),(25,30),(26,31),(27,32),(28,29)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,23),(2,24),(3,21),(4,22),(5,10),(6,11),(7,12),(8,9),(13,27),(14,28),(15,25),(16,26),(17,30),(18,31),(19,32),(20,29)], [(1,18),(2,19),(3,20),(4,17),(5,27),(6,28),(7,25),(8,26),(9,16),(10,13),(11,14),(12,15),(21,29),(22,30),(23,31),(24,32)], [(1,23),(2,24),(3,21),(4,22),(5,10),(6,11),(7,12),(8,9),(13,25),(14,26),(15,27),(16,28),(17,32),(18,29),(19,30),(20,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,25),(14,26),(15,27),(16,28),(17,32),(18,29),(19,30),(20,31),(21,23),(22,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,2,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,1,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 2T | 2U | 2V | 2W | 4A | ··· | 4H | 4I | ··· | 4T | 4U | ··· | 4AF |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 |
kernel | C2×C22.19C24 | C2×C42⋊C2 | C2×C4×D4 | C2×C22≀C2 | C2×C4⋊D4 | C2×C22⋊Q8 | C2×C22.D4 | C22.19C24 | C24×C4 | C22×C4○D4 | C22×C4 | C23 |
# reps | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 16 | 1 | 1 | 8 | 16 |
In GAP, Magma, Sage, TeX
C_2\times C_2^2._{19}C_2^4
% in TeX
G:=Group("C2xC2^2.19C2^4");
// GroupNames label
G:=SmallGroup(128,2167);
// by ID
G=gap.SmallGroup(128,2167);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations